Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 10: 568786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552952

RESUMO

BACKGROUND: Breast and ovarian cancers are the most prevalent cancers and one of the leading causes of death in Indian women. The healthcare burden of breast and ovarian cancers and the rise in mortality rate are worrying and stress the need for early detection and treatment. METHODS: We performed amplicon sequencing of 144 cases who had breast/ovarian cancer disease (total 137 cases are patients and seven are tested for BRCA1/2 carrier) Using our custom designed gene panel consisting of 14 genes, that are associated with high to moderate risk of breast and ovarian cancers. Variants were called using Torrent Variant Caller and were annotated using ThermoFisher's Ion Reporter software. Classification of variants and their clinical significance were identified by searching the variants against ClinVar database. RESULTS: From a total of 144 cases, we were able to detect 42 pathogenic mutations in [40/144] cases. Majority of pathogenic mutations (30/41) were detected in BRCA1 gene, while (7/41) pathogenic mutations were detected in BRCA2 gene, whereas, (2/41) pathogenic mutations were detected in TP53 gene and BRIP1, PALB2, and ATM genes respectively. So, BRCA genes contributed 88.09% of pathogenic mutations, whereas non-BRCA genes contributed 11.91% of pathogenic mutations. We were also able to detect 25 VUS which were predicted to be damaging by in silico prediction tools. CONCLUSION: Early detection of cancers in the Indian population can be done by genetic screening using customized multi-gene panels. Indications of our findings show that in the Indian population, apart from the common BRCA genes, there are other genes that are also responsible for the disease. High frequency mutations detected in the study and variants of uncertain significance predicted to be damaging by in silico pathogenicity prediction tools can be potential biomarkers of hereditary breast and ovarian cancer in Indian HBOC patients.

2.
PLoS One ; 14(8): e0220711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398194

RESUMO

Nowadays CHK2 mutation is studied frequently in hereditary breast and ovarian cancer patients in addition to BRCA1/BRCA2. CHK2 is a tumor suppressor gene that encodes a serine/threonine kinase, also involved in pathways such as DNA repair, cell cycle regulation and apoptosis in response to DNA damage. CHK2 is a well-studied moderate penetrance gene that correlates with third high risk susceptibility gene with an increased risk for breast cancer. Hence before planning large population study, it is better to scrutinize putative functional SNPs of CHK2 using different computational tools. In this study, we have used various computational approaches to identify nsSNPs which are deleterious to the structure and/or function of CHK2 protein that might be causing this disease. Computational analysis was performed by different in silico tools including SIFT, Align GVGD, SNAP-2, PROVEAN, Poly-Phen-2, PANTHER, PhD-SNP, MUpro, iPTREE-STAB, Consurf, InterPro, NCBI Conserved Domain Search tool, ModPred, SPARKS-X, RAMPAGE, Verify-3D, FT Site, COACH and PyMol. Out of 78 nsSNP of human CHK2 gene, seven nsSNPs were predicted functionally most significant SNPs. Among these seven nsSNP, p.Arg160Gly, p.Gly210Arg and p.Ser415Phe are highly conserved residues with conservation score of 9 and three nsSNP were predicted to be involved in post translational modification. The p.Arg160Gly and p.Gly210Arg may interfere in phosphopeptide binding site on FHA conserved domain. The p.Ser415Phe may interfere in formation of activation loop of protein-kinase domain and might interfere in interactions of CHK2 with ligand. The study concludes that mutation of serine to phenylalanine at position 415 is a major mutation in native CHK2 protein which might contribute to its malfunction, ultimately causing disease. This is the first comprehensive study, where CHK2 gene variants are analyzed using in silico tools hence it will be of great help while considering large scale studies and also in developing precision medicines related to these polymorphisms in the era of personalized medicine.


Assuntos
Quinase do Ponto de Checagem 2/genética , Simulação por Computador , Polimorfismo de Nucleotídeo Único , Sequência de Aminoácidos , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Biologia Computacional , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...